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Abstract Organization of iron filler particles inside an

elastomer is obtained by curing the polymer in presence of

a magnetic field. We have studied the effect of structuring

the particles in chains on the quasistatic behavior in elon-

gation in the absence of magnetic field. The effect of a

coupling molecule between the surface of the particles and

the elastomer is also analyzed. It is shown that the modulus

of the first loading curve is strongly increased by struc-

turing the particles, and also by the use of a coupling agent.

Using an effective medium approach we well reproduce the

experimental behavior of the elastic modulus and we

deduce that a thick layer of elastomer is still present

between the particles. A finite element calculation allows

to distinguish between two modes of rupture at high strains,

depending on the strength of the coupling between the

particles and the matrix.

Introduction

Electro and magnetorheology is a topic of growing interest

since the eighties, in particular for applications dealing

with damping. For instance, the automotive industry is

interested in developing applications like engine mounts,

shock absorbers, seat damping [1]. A more ambitious

project concerns damping for seismic protection [2] using a

MR fluid. All these applications are possible thanks to the

ability to rapidly and reversibly change the rheological

properties by applying an electric or a magnetic field. One

can distinguish two classes of materials: one where the

particles are embedded in a liquid (e.g. ferrofluids, mag-

netorheological fluids [3, 4]) and another one where they

are embedded in solids (foams, elastomers), and two kinds

of control: electric or magnetic. The main disadvantage of

the first class is related to the sedimentation or segregation

of particles in the presence of gravity or hydrodynamic

forces. The second class of materials and more especially

magnetorheological elastomers where magnetic particles

are dispersed in a polymer do not suffer from this problem.

On the other hand their adaptive character, that is to say the

ability to change their elastic properties with the help of a

magnetic field depends on the initial structure of particles

inside the elastomer matrix. If the particles are dispersed

homogeneously inside the elastomer, then the application

of a field has practically no influence on the elastic prop-

erties. On the contrary if the particles have been aligned

into columns before curing, then a large change of elastic

properties can be observed in the presence of a magnetic

field [5–7]. The most efficient magnetorheological effect is

reported for low strains (around 5% of deformation) [8],

but some authors found a field induced change till a strain

of 40%. Actually a good understanding of the magneto-

rheology of such an elastomer is very dependent on the

knowledge of microstructure (arrangement of particles

inside the elastomer) and also on the interface between

particles and elastomer.

In this paper we study the elastic behavior of the com-

posite with the help of a micromechanical analysis based

on a cell model in order to predict the elastic behavior of

the composite in the absence of a magnetic field. We shall
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use linear elasticity for the analytical model and the pre-

dictions will be compared with Finite Elements Methods

(FEM) using non-linear elasticity and with experimental

results. In section Sample preparation, we describe the

sample preparation, and in section Quasi-static experiments

the experimental results concerning the elasticity, with or

without chemical modification of the surface of the parti-

cles. In section Theory a theoretical analysis is presented,

and the comparison with experiments is shown in section

Comparison between theory, FEM and experiments. We

end up with a discussion and a conclusion.

Sample preparation

The elaboration of a structured composite requires special

care. First of all, concerning the choice of the elastomer,

one needs good mechanical properties, but also a relative

low viscosity before crosslinking, to facilitate the particles

dispersion and its structuring. Moreover, a reticulation at

room temperature (RTV) is a great advantage, in order to

apply a magnetic field on the sample without need of

specific or complicated devices. For all those reasons, our

choice came to the Rhodorsil RTV 1062S (initial viscos-

ity = 45 Pa s). The particles used to fill the elastomer

needs good magnetic properties: no remnant magnetization

and high saturation magnetization. We used a RP Norma-

pur iron powder, with a high degree of purity (99.5% of

iron). Moreover, the particles are near to be perfect

spheres, because this iron powder has been prepared by

hydrogen reduction. SEM experiments have proven a good

spherical shape and a not too large size dispersion (between

2 and 10 lm) of the powder (Fig. 1).

The first step is a chemical clean-up of the particle, to

remove their impurities and to get a reproducible surface.

Using an ultrasound sonicator, one washes them succes-

sively with trichloroethylene, ethanol, pure water, ethanol

and acetone, 10 min each. The last and most important step

consists in coating the particles with a silane coupling

agent to improve adhesion to the elastomer: a 5% solution

of aminosilane is prepared in pure water; the iron powder is

then blended inside the solution still using the sonicator.

The treated powder is at last washed using ethanol and then

dried under vacuum. Actually in this study we shall use

both coated and not coated particles.

Then, particles are carefully dispersed in the elastomer.

However, loading the pre-polymer strongly increases its

viscosity, so only 10% in volume of iron particles is

included in the matrix; higher loadings are possible, but

some silicone oil has to be added to the melt to reduce its

viscosity and keep molding and particle structuring easy.

The melt is degassed under vacuum, molded in a cylinder

which is placed inside an electromagnet and put on

rotation in order to avoid sedimentation and help the

particles to find their minimum of energy in presence of

the field. The following two steps structuring protocol has

been established. The first step is devoted to the structure

creation, and lasts 10 min. For this time, the melt still has

a low viscosity; the field is slowly raised up to 200 kA/m

at a mean rate of 20 kA/m per minute (to prevent a too

fast and out of equilibrium aggregation). Then, as the

viscosity increases, we start the second step: the field is

kept at its higher value for 10 min till curing is almost

completed, then we drop it to half of its value for 4 h, and

finally decrease it to 0. The sample can be unmoulded

after one day, and is ready to use after one week. Figure 2

illustrates the anisotropic structure one can get: near-to-be

perfect chains well oriented in the direction of the mag-

netic field.

Quasi-static experiments

The quasi-static behavior of the composite under traction is

investigated thanks to a home made traction device. The

samples are cylinders whose length is 50 mm, and diameter

7 mm.

Fig. 1 Carbonyl iron particles viewed by SEM

Fig. 2 A chain of the structured composite viewed by optical

microscopy at low volume fraction (F = 3%) inside a transparent

elastomer
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Pure elastomer

In order to understand the behavior of the composite, we

need to determine the stress–strain curve for the pure

elastomer. Figure 3 shows the experimental result of the

uniaxial tension of a cylindrical sample. We see that the

linear Hookean model is only valid till k = 1.4, but could

be roughly valid up to k = 3.

It is well known that at high strains the stress–strain law

should be a non-linear, hyper elastic one. In the literature

related to rubber elasticity, one can find many theoretical

models; most of the approaches are based on a strain

energy density function or elastic potential W, corresponding

to the change in the Helmoltz free energy of the material

upon deformation. We have chosen the well-known

Mooney–Rivlin law: its third-order deformation approxi-

mation perfectly fit our elastomer behavior, as it can be

seen in Fig. 3. The strain energy function is [9]:

WMR�5p¼c10ðI1�3Þþc01ðI2�3Þþc20ðI1�3Þ2

þc11ðI1�3ÞðI2�3Þþc02ðI2�3Þ2þ1

d
ðJ�1Þ2 ð1Þ

• The subscript MP-5p stands for Mooney–Rivlin, five

parameters

• The constants cij are chosen to fit a 1D tension of a pure

elastomer cylinder, while keeping a physical meaning,

to ensure convergence for our FEM calculations.

• d ¼ 2=K where K is the bulk modulus of the elastomer

• J is the ratio of the deformed elastic volume over the

undeformed volume of materials.

• I1, I2 and I3 are the strain invariants, given by

I1 ¼ k2
1 þ k2

2 þ k2
3

I2 ¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

3k
2
1

I3 ¼ k2
1k

2
2k

2
3 ð2Þ

The ki are the principal stretch in the i direction, and are

defined by the ratio of the final length to the initial one. The

quantities (I1 – 3), (I2 – 3) and (I3 – 3) conventionally

impose W to be zero in the non-stained state.

The third invariant I3 represents physically the square of

the ratio between the volume of a material element in the

deformed and undeformed state. As elastomers are nearly

incompressible, I3 = 1.

The geometry of the sample is a cylinder so the defor-

mations in the transverse directions are the same. Hence,

k2 ¼ k3 ¼
1
ffiffiffi

k
p

I2 ¼ I3

ð3Þ

So, the stress–strain law is:

rMR¼2 k� 1

k2

� �

C10þ
C01

k
þ2C20 k2þ2

k
�3

� ��

þ2
C02

k
2kþ 1

k2
�3

� �

þ3C11

1

k2
�1

k
þk�1

� �� ð4Þ

Writing k = 1 + �, the coefficient of the first power in �,

gives the initial Young modulus: 6ðC10 þ C01Þ ¼ Einitial

The fit of the experimental curve for a 1D tension

of an elastomer cylinder (Fig. 3) with a 5 parameters
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0
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a)

λ

 RTV 1062, experimental
 Mooney-Rivlin fit
 Hookean, E=230kPa

Fig. 3 Uniaxial tension stress–

strain curve of the RTV 1062 S

elastomer
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Mooney–Rivlin law well represents the experiment with

the following coefficients:

C10 ¼ 13680Pa;C01 ¼ 39000Pa;

C20 ¼ C02 ¼ 0Pa;C11 ¼ 9720Pa

The corresponding initial Young modulus of the pure

elastomer is then: Em = 316 kPa. Note that this initial

modulus is well above the one of 230 kPa that can

approximate the experimental behavior till a stretch value

k = 3. For the analytical model where we need to use linear

elasticity to represent the pure elastomer behavior on the

wider possible range, we shall use the average value

E = 230 kPa, but for finite element calculations we use Eq.

4 with the values of C listed above.

The composite

For the traction experiments with the filled composite, one

must take care of the decrease of stiffness between the first

and subsequent tractions [10, 11]. This effect is clearly

seen in Figs. 4 and 5. Most of the softening effect-known

as Mullins effect—occurs during the first load and, after a

few cycles, the composite gains a constant stress–strain

behavior. Thus, during this first traction, the composite is

damaged at some extent due to: particles’ reorganization,

aggregate breaking, debonding of the elastomer from the

particles [12].

The relation between the Mullins effect and the deb-

onding will be the subject of an other paper. Here we

mainly wish to model the first traction curve of a structured

composite; nevertheless, it is interesting to have a look to

the difference between first and second traction curves in

order to emphasize the effect of the organization in chains

and/or of the coating molecule on the elasticity. In Fig. 4

we see that there is a very large difference of effective

modulus (almost a factor of 2) between the sample struc-

tured and coated and the isotropic sample. The fact that in

the isotropic sample there is no difference between the first

and second traction means that the particles are far enough

from each other-the volume fraction is 10%—so that the

reinforcing effect does not depend on interaction between

particles or on debonding. On the contrary for the struc-

tured sample the chains of particles behave as solid fibers

that increase the modulus of the composite, but, as the

strain increases, the local stress between two particles be-

comes much larger than the average stress, and the elas-

tomer will progressively debonds. That is why the second

traction curve is close to the one of the isotropic composite.

Furthermore, we also expect a large difference between the

cases where the particles are coated with a silane coupling

agent or not, since breakage between the bonds should

happen at higher strains when the adhesion between the

elastomer network and the particles is stronger. That is

what we observe in Fig. 5 where the difference between the

first and second traction curves for the structured but un-

coated sample is much smaller than for the coated one.

These results demonstrate that the Mullins effect is here

mainly due to debonding between the particles and the

matrix. As our goal is to model the material behavior

without any kind of damage, we shall focus on this first

elongation for comparison with simulations and models.

Thereafter, all the experiments presented are first traction

curves realized with 10% iron fillers coated with a silane

coupling agent, to strongly reinforce the charge-matrix

adhesion.

In Figs. 6 and 7, we have plotted the first tension curves

till high strains of the four classes of materials: structured

0.0 0.1 0.2
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 structured, treated, 1st tension
 structured, treated, 2nd tension
 isotropic, 1st tension
 isotropic, 2nd tension

st
re

ss
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kP
a)
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Fig. 4 Difference between first

and second traction curves of

the structured, treated

composite with respect to the

isotropic composite (F = 10%)
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composite with treated particles, structured composites

with untreated particles, isotropic composite with treated

particles and pure elastomer. As already told we see that,

except at very low strains (below 0.05:cf. Fig. 7), the

behavior of the untreated and structured composite

becomes very similar to the one of the isotropic composite.

Also, as expected, the experiments reported in Figs. 6

and 7 show that the elastic modulus of a filled, non-struc-

tured composite is well above the pure elastomer one. The

values of an effective modulus based on a strain of 2

(k = 3) are reported in Table 1. The increase from the pure

elastomer (E = 230 kPa) to the structured and coated

composite (E = 750 kPa) is very large. because the pseudo-

chains oriented in the direction of the load strongly

increase strongly its stiffness; we shall see in section The

structured composite, how this enhancement is related to

the average size of the gap between the particles.

Theory

The isotropic material

We have compared in Fig. 8 the stress–strain experimental

behavior of a filled, non-structured elastomer (/ = 10%) to

the predictions of an effective medium theory and to the

result of a FEM simulation whose model is described in

section The structured composite. In effective medium
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Fig. 5 Difference between first

and second traction curves for

treated and non-treated particles

(both in a structured composite,

F = 10%)
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Fig. 6 First uniaxial tensions

of the studied materials till high

strains

J Mater Sci (2006) 41:5941–5953 5945

123



theory the material is supposed to be linear and isotropic;

and the effective Young modulus is calculated, based on

the volume fraction F and the particles and matrix mod-

ulus. As the volume fraction is low, the effective modulus

can be represented by [13]

G� ¼ Gm 1� 15/ð1� tmÞð1� Gi=GmÞ
7� 5tm þ 2ð4� 5tmÞðGi=GmÞ

� �

ð5Þ

where mm is the Poisson ratio of the matrix, Gm the shear

modulus of the matrix is related to the Young modulus, Em

by

Gm ¼
1

2

Em

1þ tm

ð6Þ
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Fig. 8 Experimental

unstructured (isotropic)

composite F = 10% compared

with Christensen’s isotropic

model and FEM calculations
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Fig. 7 First uniaxial tensions of

the studied materials (detailed

view at low strains)

Table 1 Average Young modulus of the studied materials for strains

lower than 2

Material Average Young

modulus (kPa)

Structured composite, treated 750

Structured composite, not treated 420

Isotropic composite 370

Pure elastomer 230
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The same relation holds for Gi the shear modulus of the

particle. Considering the elastomer as linear (with initial

modulus Em = 316 kPa given by the fit with Eq. 4), nearly

incompressible (mm = 0.493), filled with pure-iron particles

(Ei = 196 GPa, mi = 0.29), we get an effective Young

modulus of E* = 395 kPa, which is close to the experi-

mental one (E = 370 kPa) Actually, as the inclusion

modulus is far higher than the matrix one ( Gi � Gm), Eqs.

5 and 6 reduce to the well known Einstein formula:

E� ¼ Emð1þ 2:5UÞ ð7Þ

The structured composite

Analytical model

In order to develop an analytical model that describes the

behavior of a structured elastomer, we start from a

micromechanical analysis, using a unit cell which can

generate a representative chain by replication along the

chain axis [14, 15]. This cell is a cylinder, an elementary part

of the composite, and is made of two half-spheres embedded

in a large cylinder of elastomer (Fig. 9). Applying boundary

conditions described hereafter on the surface of this cylinder

builds a chain structure in the displacement direction and an

average medium in the transverse one.

The structure is regarded as made of equally spaced

ideal particles, so the main parameter in the model is the

ratio g/a of the gap between the spheres to the radius. The

quantity L represents the thickness of an elastomer annulus,

surrounding the particles. It is calculated as a function of

g/a ratio and volume fraction of inclusions /:

Lþ a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2

3/ 2þ g
a

� �

s

As the cell is tested in uniaxial tension, the displacement

is constant everywhere on the two terminal-sections of the

cylinder. It is set to zero on the bottom section, while it is

equal to �(2a + g) on the upper one, e ¼ Dl=l being the

imposed strain. The lateral section is kept straight due to

the presence of adjacent chains, but the average radius of

the cylinder is allowed to decrease according to the Poisson

ratio of the elastomer: DV ¼ �eV .

We shall suppose that the linear elasticity can be used:

Fig. 3 has shown it gives reasonable approximation till

k = 3.

In the frame of linear elasticity, the effective modulus of

the elementary cell can be calculated following Christensen

[16]. He solved the mechanical equilibrium using the

lubrication approximation, requiring the gap between the

spheres being much smaller than the inclusion radius.

At the surface of the sphere, z ¼ �h=2; the displace-

ment field should satisfy:

ur ¼ 0

uz ¼ �
u
2

ð8Þ

In this case the displacement field is approximated by

ur ¼
3

4

u
h

r
4z
h
� 1

� �

uz ¼ �
3

2

u
h

4z3

3h
� z

� � ð9Þ

where u is the displacement imposed on the system.

A map of the orientation of this displacement field is

shown in Fig. 9. In Fig. 10 we compare the amplitude of

the normalized deformation field (Eq. 9) to the one ob-

tained by FEM using non linear elasticity as indicated in

next section. We have done the comparison for two dif-

ferent strains: a moderate one �g = 0.25 and a strong one

�g = 1.2. In Fig. 10 the comparison is made along the

revolution axis and in Fig. 11 along the radial axis in the

symmetry plane. In both cases the agreement is very good

Fig. 9 The chain model of the

structured composite: (a)

overview; (b) unit cell
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along the revolution axis. Along the radial axis the agree-

ment is fair at the lower strain but there is a quite large

difference at higher strain, although the general shape is

well reproduced. We shall have to keep in mind that at high

strains the analytic model only reproduces approximately

the displacement field in the gap, but nevertheless the

overall stress–strain behavior is well reproduced even at

high strain as we shall see in section Two spheres’

experiment.

Expressing the change of gap length with the angle h;

the strain energy between the two spheres is:

U ¼ p
8

Emua
Z p=2

0

sin3 h cos h

ðg=2aþ 1� cos hÞ3
dh ð10Þ

whereas the deformation energy of an equivalent cylinder

of radius a of elastomer is:

U ¼ 1

2
Eeff

u
2aþ g

� �2

pa2ð2aþ gÞ ð11Þ

where: Em is the Young modulus of the elastomer (matrix),

Eeff is the effective Young modulus, u is the imposed

displacement on the elementary cell, a is the radius of the

inclusions, g is the gap between the spheres.

Identifying the strain energy of Eqs. (10) and (11) gives

the effective modulus of the structured composite model:

Eeff ¼
1

4
Em

ð2aþ gÞ
a

Z p=2

0

sin3 h cos h

ðg=2aþ 1� cos hÞ3
dh ð12Þ
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Fig. 10 Normalized strain

between two spheres along the

revolution axis. Comparison

between Eq. 9 and FEM model

with Mooney–Rivlin law; initial

gap:0.056 radius
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Fig. 11 Normalized strain

between two spheres along the

radial axis. Comparison

between Eq. 9 and FEM model

with Mooney–Rivlin law, initial

gap:0.056 radius
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However, we still have to add an annulus of elastomer of

thickness L which is supposed homogeneously strained; so

the total stress is given by

r ¼
Eeffectiveea2 þ Eme ðaþ LÞ2 � a2

h i

ðaþ LÞ2
ð13Þ

As this solution is obtained in the frame of linear

elasticity, finite elements calculations were made in order

to get a more accurate solution and to check the range of

validity of these approximations.

FEM backgrounds

The goal of these simulations is first to check the validity

range of the analytical model, and also to get a more pre-

cise view of stresses inside the gap between two particles.

The elements used in the simulation have four degrees

of liberty (X, Y, Z and the hydrostatic pressure), and are

designed for the Mooney–Rivlin law.

The FEM system is stretched in the Z direction. More-

over, as our elementary cell is the unit part of the chain-like

structure, it is clear that the contact lines between neigh-

bors cell must remain straight during extension to keep the

continuity of the system; so a displacement is imposed on

the vertical border with three constraints: keep the borders

straight, preserve the volume of the elastomer (according to

its Poisson ratio), and reach an equilibrium at the end of the

simulation (the X component of the force on the lateral

nodes is zero). No stresses are imposed on the lateral part

of the cylinder. So, the edges would not deform, as inside

the composite.

Perfect bonds between the elastomer and the inclusion

were assumed. The solid sphere is taken to be perfectly

rigid, so as to all the deformation energy is stored in the

matrix.

Comparison between theory, FEM and experiments

Two spheres’ experiment

In order to have an experimental model of the unit cell we

have made a sample where two macroscopic spheres (2 cm

in diameter) are embedded in an elastomer as shown in

Fig. 12. The size of the gap between the two spheres is set

to 1 mm. To be able to access high strains without

desadhesion at the surface of the spheres, their surfaces are

chemically modified to improve the elastomer to surface

adhesion. Basically, the method is the same as the one

formerly presented but the spheres are placed in the silane

solution without sonification.

The comparison of the model to FEM and experiments

shows a very good agreement till the rupture between the

elastomer and the particles at a strain (relative to the gap) of

4 (cf. Fig. 13). The analytical model (Eq. 14) based on the

average modulus of the pure elastomer (i.e. 230 kPa) will

predict a straight line since the model is linear and so will

not reproduce the small curvature of the experimental

curve. Nevertheless the curve obtained without any

parameter gives a quite fair estimation of the experimental

behavior and so can be safely used for the purpose of

modeling the effective modulus of the structured composite.

At the breaking point with a local strain of 4, the highest

local stress found by FEM is located just at the middle of

the two spheres and reaches 1.1 MPa.

Gap between particles in the structured composite

The only parameter of our model is the gap between par-

ticles. We have used the analytical approach at low strains

(� < 0.1) in order to fit the value of the gap from the

experimental curves, the best fit is obtained with

g/a = 0.056 (cf. Fig. 14). Of course one must keep in mind

that the real microstructure of a structured composite is far

from the idealized one and that this gap represents an

average one.

This value g/a = 0.056 is in quite good agreement with

the one obtained from permeability measurements in

the same kind of structured composite [13], which gives

g/a = 0.06. The existence of a gap filled by elastomer

between particles can be evidenced by electronic micros-

copy. Some in situ investigation has been made, by cutting

longitudinally the samples using a cryotome. This device

freezes the composite, and then a knife cut it in thin sheets

of 15–20 lm depth. The sheets are observed by SEM. One

can see the gap between the particles (cf. Fig. 15) and the

order of magnitude is actually the one we have found from

the fit of elastic properties. The existence of a gap between

particles was rather unexpected since a high magnetic field

is used to structure the particles. For a small gap between

Fig. 12 The two spheres experimental system. The spheres diameter

is 9.8 mm, they are spaced by 1 mm and are embedded in elastomer
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the particles, the lubrication theory predicts a friction

coefficient that is the Stokes’ one divided by the

normalized gap g* ¼ g/a between the surfaces. Naming

Fmagn the attractive magnetic force between the particles,

the relative velocity is given by

dg�

dt
¼ Fmagng�

6pga2
ð14Þ

This relation takes into account the slowing down due to

lubrication, it is only valid for small separations (g* < 0.1)

but for the sake of evaluation we can use it at larger dis-

tances. Moreover, at high magnetic field (l0H = 0.5

Tesla), we consider that the magnetization has reached its

saturation value Ms, so the magnetic force can be written is

the dipolar approximation as:

Fmagn ¼
6m2

4pl0r4

m ¼ l0MS

4

3
pa3

ð15Þ

The saturation magnetization Ms is 1.713 106 A m–1 for

iron.

Starting form a separation of three diameters between

surfaces (initial state for a volume fraction F = 10%) and

ending with 0.06a, the approach time is around 6 ms for a

viscosity g = 45 Pa s. This is much shorter than the
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Fig. 14 Comparison between

the experimental uniaxial

tension of the structured

composite (F = 10%) and the

model for a ratio g/a = 5.6%
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Fig. 13 Comparison between

experiments, FEM and model

on the two grafted spheres

system. The breaking inside the

matrix occurs at �gap = 410%, at

a mean stress of 350 kPa

5950 J Mater Sci (2006) 41:5941–5953

123



experimental time during which a high field is applied

before curing. One explanation could be related to the

physical adsorption of a thick layer of polymer chains onto

the particle, which offers a very high resistance to the

approach of the two particles.

Stresses inside the gap

Due to the small gap between particles, some regions

between the poles can access very high stresses. We

present an analysis by FEM of the strain map in the fol-

lowing Figs. (16, 17, 18), for three different strains and

starting with a gap g = 0.056a.

On all the figures the first principal strain map is plotted;

the darkest regions are less strained than the lighter ones.

First of all, the first principal strain map reveals the

surrounding block of elastomer is weakly deformed,

whatever the imposed strain is. On the other hand, the

stress concentrates in the region between the spheres, and

the direction of the local stress is clearly heading toward

this region. This means that the main effect of the elasto-

mer incompressibility is to concentrate all the stress

towards the middle of the gap. For more convenience,

strains are reported relatively to the gap.

Another interesting point is the location of the highest

stress. For the smallest strains, till �gap = 0.3, the highest

stresses are located at about 15� from the pole, on the

surface of the inclusion, whereas for larger deformations,

the most stressed region migrates inside the elastomer, just

to the middle of the gap. For instance, in Fig. 16, the

maximum stress on the pole is 20 kPa, whereas just at the

middle of the gap the local stress is 18 kPa. In practice, in

the case of weak bonds between the elastomer and the

inclusion, one can expect the damage will begin from the

surface of the sphere, near its pole, with a minimal size of

30�. Now, if the particles are coated with a coupling agent,

the bonds between the elastomer and the inclusion become

much stronger, and consequently one can expect the elas-

tomer starts tearing from the middle of the spheres once a

Fig. 16 Strain field calculated

by FEM on the unit cell (a and

b) for �gap = 0.05 The

maximum local stress (19 kPa)

is found at the surface of the

particle (a)

Fig. 17 Strain field for �gap = 1.25. rmax = 380 kPa, rmin = 13 kPa,

�cell = 3.4%

Fig. 15 SEM view of a chain

inside the structured composite,

obtained by cutting a thin sheet

of the material
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critical energy is reached. We can estimate the critical

strain above which tearing of the elastomer will occur by

taking the local tearing stress of 1.1 MPa obtained from a

comparison of experiments and FEM on a two spheres

system. In the unit cell representing the composite we

reach this stress at the middle of the gap for an average

strain of 10.5%. If we calculate the average breaking strain

from the local breaking strain �g ¼ 4.1 in the two

spheres experiment we obtain � ¼ �g/(1 + 2/0.056) ¼ 0.11

which is close to the value obtained from FEM. Actually

we do not see any inflexion on the stress–strain curve of the

composite material at this point but rather a progressive

departure from a straight line starting at about � ¼ 0.3 (cf.

Fig. 6); this is obviously because we have a distribution of

gaps rather than a constant one.

In the upper part of Fig. 18 we have plotted the first

principal strains at the breaking point while the lower part

contains the first principal stress. This last quantity mea-

sures the hydrostatic intensity of the stress state. It is seen

that both fields are very similar. In the stress field, the white

line delimits the positive and negative stress domain;

the zone of maximum hydrostatic extension is found in the

gap, between the particles’ poles (8 MPa), while the

maximum hydrostatic compression (–25 kPa) surrounds

the spheres.

Moreover, the strain map reveals the stress sharply

changes only for angles smaller than 60�. For example, for

�gap = 3.75, the maximum stress is located in a small area

just in the middle of the elementary cell; the stress gradient

remains small in the loading direction, while it decreases

quickly on the transverse axis. For higher distances from

the pole, the analysis of the deformation fields reveals we

can assume quasi-homogeneous stresses along the loading

axis.

Fig. 18 Strain (a) and stress

(b) field for �gap = 3.75

5952 J Mater Sci (2006) 41:5941–5953

123



Discussion

The main assumption of the model was the equal spacing

between the spheres inside one chain. But also we have

neglected interactions between chains of spheres. Some

attempt in order to evaluate the importance of interchain

interactions can be obtained from FEM simulations of cells

containing for instance four particles disposed either on a

square or in staggered position.

The results have shown that the chains do not interact

each other. The reason is that the size of the region where

the stress is concentrated inside: the gap between two

spheres in is at least an order of magnitude smaller than the

average distance between two chains. The strain map

shows that the region separating the chains is almost not

deformed, even if the chains are staggered, that is to say if

the gap of one chain coincides with the equator of a particle

on the adjacent chain; that is why the macroscopic stress

does not differ from the single chain model.

The agreement between experiment, model and simu-

lations is quite satisfying. This means that the structured

composite can be described as a single chain structure. This

simplification of the problem will facilitate the under-

standing of the magnetorheological behavior of the smart

composite.

Conclusion

This study on the elastic properties of an elastomer con-

taining particles arranged in linear chains has shown firstly

that this ordering strongly increases the elastic modulus

compared to the case where the fillers are homogeneously

distributed. On the other hand, the Mullins effect is very

large giving rise to a final modulus, after a few tractions,

which is close to the one of a composite with homoge-

neously distributed charge. Using a coupling agent strongly

changes the slope of the first traction curve, giving a good

indication of the effectiveness of the chemical grafting

between particles and elastomeric network. A model based

on lubrication type analysis well reproduces the elastic

behavior of a two spheres experiment below the breaking

strain. Thanks to this model we were able to show that, in

the composite material, particles are not in contact inside

the elastomer and that the average gap between particles

was 5.6% of the radius. This finding is confirmed by

electronic microscopy. Lastly a FEM analysis of the strain

map has shown that the maximum stress is located on the

surface of the particle at about 15� from the pole if the local

strain is smaller than 40%, but that it moves to the center of

the gap at higher strains. This last result is of interest rel-

atively to debonding or tearing mechanisms involved at

high local strains. It means that, if the coupling between

particles and elastomer is weak, then debonding from the

surface will start suddenly on a quite large area; on the

contrary, for strong enough attachment, the elastomer will

tear on the axis of centers and at the middle of the gap.

These different modes of ruptures should give rise to dif-

ferent viscoelastic behavior depending on the grafting

agent on the surface of the particles. This will be the object

of a forthcoming paper.
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